a) Using the laws of exponents,
(am)n=(a)m×n,=am×an=am+n and am÷an=am−n
∴((−23)−2)3×(13)−4×3−1×16
=(23)−2×3×(3)4×13×16
[1 Mark]
=(−23)−6×34×13×12×3
=(3−2)6×34×13×2×3=(3)6(−2)6×34×121×32
[1 Mark]
=(3)6×(3)4(−1)6(2)6×(2)1×(3)2
=(3)6+4(2)6+1×32=(3)1027×32
=310−227=3827
[1 Mark]
b) 49×z−37−3×10×z−6=(7)2×z−37−3×10z−5 [72=49]
=(7)2−(−3)×z−3−(−5)10 [am×an=am+n] and [am÷an=am−n]
[1 Mark]
=(7)2+3×z−3+510
=(7)5z210
=7510z2
[1 Mark]