Simplifyand express each of the following in exponential form:
(i) 23×34×43×32
(ii) (523×54)÷57
(iii) 254÷53
(iv) 3×72×11821×113
(v) 3734×33
(vi) 20+30+40
(vii) 20×30×40
(viii) (30+20)×50
(ix) 28×a543×a3
(x) a5a3×a8
(xi) 45×a8b345×a5b2
(xii) (23×2)2
(i) 23×34×43×32
=23×34×223×25
=23+2×3431×25, [∵am×an=am+n,a≠0]
=25×34−125 [∵am÷an=am−n,a≠0]
=33
∴23×34×43×32=33
(ii) (523×54)÷57
=(58×54)÷57
=(58+4)÷57
=512÷57
=512−7
=55
∴(523×54)÷57=55
(iii) 254÷53
=(52)4÷53
=58÷53 [ ∵am)n=amn,a≠0]
=58−3
=55
∴254÷53=55
(iv) 3×72×11821×113
=72×1187×113
=72−1×118−3
=7×115
∴3×72×11821×113=7×115
(v) 3734×33
=3734+3
=3737
=1
∴3734×33=1
(vi) 20+30+40
=1+1+1, [∵a0=1,a≠0]
=3
∴20+30+40=3
vii) 20×30×40
=1×1×1
=1
∴20×30×40=1
(viii) (30+20)×50
=(1+1)×1
=2×1
=2
∴(30+20)×50=2
(ix) 28×a543×a3
=28×a5(22)3×a3
=28×a526×a3
=28−6×a5−3
=22×a2
=(2a)2, [∵am×bm=(ab)m]
∴28×a543×a3=(2a)2
(x) a5a3×a8
=a5−3×a8
=a2×a8
=a2+8
=a10
∴a5a3×a8=a10
(xi) 45×a8b345×a5b2
=a8b3a5b2
=a8−5b3−2
=a3b
∴45×a8b345×a5b2=a3b
(xii) (23×2)2
=(23+1)2
=(24)2
=28
∴(23×2)2=28