wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify: cosπ15cos2π15cos3π15cos4π15cos5π13cos6π15cos7π15

Open in App
Solution

cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15

=cosπ15cos2π15(cos12π15)cos4π15cosπ3cos6π15(cos8π15)

=(cosπ15cos2π15cos4π15cos8π15)(cos6π15cos12π15)cosπ3

=(2sinπ/152sinπ/15cosπ15cos2π15cos4π15cos8π15)(cos2π5cos4π5)cosπ3

=(sin2π/152sinπ/15cos2π15cos4π15cos8π15)(2sin2π/52sin2π/5cos2π5cos4π5)12

=(sin4π/15cos4π/15cos8π/154sinπ/15)(sin4π/5cos4π/52sin2π/5)12

=(sin8π/15cos8π/158sinπ/15)(sin8π/54sin2π/5)12

=(sin16π/1516sinπ/15)(sin8π/54sin2π/5)12

=(sinπ/1516sinπ/15)(sin2π/54sin2π/5)12

=(116)(14)12=1128

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon