wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify

cot1[1+sinx+1sinx1+sinx1sinx]=xm;x(0,π4).Find m

Open in App
Solution

cot1[1+sinx+1sinx1+sinx1sinx]

=cot1[1+sinx+1sinx1+sinx1sinx×1+sinx+1sinx1+sinx+1sinx]

=cot1[1+sinx+1sinx+21+sinx1sinx1+sinx(1sinx)]

=cot1[2+2cosx2sinx]

=cot1[1+cosxsinx]

=cot1⎢ ⎢2cos2x22sinx2cosx2⎥ ⎥

=cot1(cotx2)

=x2

on comparing it with =xm we get m=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon