12+√3+2√5−√3+12−√5
Rationalising the denominators,
=2−√3(2+√3)(2−√3)+2(√5+√3)(√5−√3)(√5+√3)+2+√5(2−√5)(2+√5)
=2−√322−(√3)2+2(√5+√3)(√5)2−(√3)2+2+√522−(√5)2
[ using identity, a2−b2=(a−b)(a+b) ]
=2−√34−3+2(√5+√3)5−3+2+√54−5
=2−√31+2(√5+√3)2+2+√5−1
=2−√3+√5+√3−(2+√5)
=2−√3+√5+√3−2−√5
=0