1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Product of Trigonometric Ratios in Terms of Their Sum
Simplify: co...
Question
Simplify:
cos
27
0
+
sin
27
0
cos
27
0
−
sin
27
0
=
tan
72
0
Open in App
Solution
L.H.S
cos
27
0
+
sin
27
0
cos
27
0
−
sin
27
0
⇒
cos
(
90
0
−
63
0
)
+
sin
27
0
cos
(
90
0
−
63
0
)
−
sin
27
0
⇒
sin
63
0
+
sin
27
0
sin
63
0
−
sin
27
0
We know that
sin
C
+
sin
D
=
2
sin
C
+
D
2
.
cos
C
−
D
2
sin
C
−
sin
D
=
2
cos
C
+
D
2
.
sin
C
−
D
2
Therefore,
⇒
2
sin
63
+
27
2
.
cos
63
−
27
2
2
cos
63
+
27
2
.
sin
63
−
27
2
⇒
2
sin
90
0
2
.
cos
36
0
2
2
cos
90
0
2
.
sin
36
0
2
⇒
2
sin
45
0
.
cos
18
0
2
cos
45
0
.
sin
18
0
⇒
tan
45
0
.
cot
18
0
⇒
1
×
cot
(
90
0
−
72
0
)
⇒
tan
72
0
R.H.S
Hence, proved.
Suggest Corrections
0
Similar questions
Q.
Without using trigonometric tables, evaluate that :
sin
2
20
∘
+
sin
2
70
∘
cos
2
20
∘
+
cos
2
70
∘
+
sin
(
90
∘
−
θ
)
sin
θ
tan
θ
+
cos
(
90
∘
−
θ
)
cos
θ
cot
θ
Q.
i.
tan
720
∘
−
cos
270
∘
−
sin
150
∘
cos
120
∘
=
1
4
ii.
sin
780
∘
sin
480
∘
+
cos
120
∘
sin
150
∘
=
1
2
which of the above statements are true.
Q.
Prove that
cos
θ
+
sin
(
270
∘
+
θ
)
−
sin
(
270
∘
−
θ
)
+
cos
(
180
∘
+
θ
)
Q.
Prove that:
(i) tan 720° − cos 270° − sin 150° cos 120° =
1
4
(ii) sin 780° sin 480° + cos 120° sin 150° =
1
2
(iii) sin 780° sin 120° + cos 240° sin 390 =
1
2
(iv) sin 600° cos 390° + cos 480° sin 150° = −1
(v) tan 225° cot 405° + tan 765° cot 675° = 0
Q.
sin
2
20
∘
+
sin
2
70
∘
=
?
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Transformations
MATHEMATICS
Watch in App
Explore more
Product of Trigonometric Ratios in Terms of Their Sum
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app