wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify:-

sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ =2sin2θcos2θ

Open in App
Solution

We have,

sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ

=(sinθ+cosθ)2+(sinθcosθ)2(sinθcosθ)(sinθ+cosθ)

Since,

(a+b)2=a2+b2+2ab

(ab)2=a2+b22ab

a2b2=(a+b)(ab)

Therefore,

=sin2θ+cos2θ+2sinθcosθ+sin2θ+cos2θ2sinθcosθ(sin2θcos2θ)

=sin2θ+cos2θ+sin2θ+cos2θ(sin2θcos2θ)

Since,

sin2θ+cos2θ=1

Therefore,

=1+1(sin2θcos2θ)

=2(sin2θcos2θ)

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon