We have,
sinθ+cosθsinθ−cosθ+sinθ−cosθsinθ+cosθ
=(sinθ+cosθ)2+(sinθ−cosθ)2(sinθ−cosθ)(sinθ+cosθ)
Since,
(a+b)2=a2+b2+2ab
(a−b)2=a2+b2−2ab
a2−b2=(a+b)(a−b)
Therefore,
=sin2θ+cos2θ+2sinθcosθ+sin2θ+cos2θ−2sinθcosθ(sin2θ−cos2θ)
=sin2θ+cos2θ+sin2θ+cos2θ(sin2θ−cos2θ)
Since,
sin2θ+cos2θ=1
Therefore,
=1+1(sin2θ−cos2θ)
=2(sin2θ−cos2θ)
Hence, proved.