Simplify:
√(5+12i)+√(5−12i)√(5+12i)−√(5−12i)
We have,
√(5+12i)+√(5−12i)√(5+12i)−√(5−12i)
√(5+12i)+√(5−12i)√(5+12i)−√(5−12i)×√(5+12i)+√(5−12i)√(5+12i)+√(5−12i)onrationlized
=(√(5+12i)+√(5−12i))2(√(5+12i))2−(√(5−12i))2
=5+12i+5−12i+2√(5+12i)√(5−12i)5+12i−5+12i
=10+2√25−144×(−1)24i
=2(5+√25+144)24i
=5+√16912i
=5+1312i
=1812i
=32i
Hence, this is the answer.