Here (a2−b2)+(b2−c2)+(c2−a2)=0
Using, If (a+b+c)=0 ,then a3+b3+c3=3abc
∴(a2−b2)+(b2−c2)3+(c2−a2)3
=3(a2−b2)×(b2−c2)×(c2−a2)
Also (a−b)+(b−c)+(c−a)=0
∴(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
∴ Given expression
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
=3(a2−b2)(b2−c2)(c2−a2)3(a−b)(b−c)(c−a)
=3(a−b)(a+b)(b−c)(b+c)(c−a)(c+a)3(a−b)(b−c)(c−a)
=(a+b)(b+c)(c+a)