∫sin4xcos6xdx
=∫cos6x(sin2x)2dx
=∫cos6x(1−cos2x)2dx
=∫cos6x+cos10x−2cos8xdx
=∫cos6xdx+∫cos10xdx+∫(−2)cos8xdx
=cos5xsinx6+5∫cos4x6+cos9xsinx10+910∫cos8xdx−2(cos7sinx8+78∫cos6xdx)
=cos9xsinx10−11cos7xsinx80+cos5xsinx160+cos3xsinx128+3cosxsinx256+3x256
simplyfying,
=2sin10x+5sin8x−10sin6x−40sin4x+20sin2x+120x+c10240
=5sin8x−40sin4x+32sin52x+120x+c10240