i) (m+n7)3(m−n7)=(m+n7)2(m+n7)(m−n7)=(m+n7)2(m2−n249)=(m2+n249+2mn7)(m2−n249)=m4+/m2n249+2m3n7−/m2n249−n4(49)2−2mn37×49=m4−n4(49)2+2mn7(m2−n249)=(m2−n249)(m2+n249+2mn7)
ii) (x2−25)(25−x2)−x2+2x=−(x2−35)(x2−25)=x2+2x=−{(x2−25)}=x2+2xorx2+2x+(x2−25)2=0x2+2x+(x24+425−2x5)5x24+8x5+425=0⇒125x2+160x+16100=0⇒125x2+160x+16=0