Simplify 1x+p+1x+q+1x+r+pxx3+px2+qxx3+qx2+rxx3+rx2
1x+p+q+r
1p+1q+1r
3x
3p+q+r
Given, 1x+p+1x+q+1x+r+pxx3+px2 +qxx3+qx2+rxx3+rx2=1x+p+1x+q+1x+r+pxx2(x+p) +qxx2(x+q)+rxx2(x+r)=1x+p+px(x+p)+1x+q+qx(x+q) +1x+r+rx(x+r)=(x+p)x(x+p)+(x+q)x(x+q)+(x+r)x(x+r)=1x+1x+1x=3x
Find the value of : 1x+p+1x+q+1x+r+pxx3+px2+qxx3+px2+rxx3+rx
For each pair of polynomials p(x) and q(x) given below find the degree of p(x) + q(x) and p(x)q(x).
(i)
(ii)
(iii)
(iv)