Simplify:
(i) (35)11×(315)4−(35)18×(35)5
(ii) (16)7×(25)5×(81)3(15)7×(24)5×(80)3
We have
(i) (35)11×(315)4−(35)18×(35)5
=355×360−390×325 [∵(am)n=am×n]
=3(55+60)−3(90+25) [∵am×an=a(m+n)]
=3115−3115
=0
(ii) (16)7×(25)5×(81)3(15)7×(24)5×(80)3
=(16)7×(52)5×(34)3(3×5)7×(3×8)5×(16×5)3
=(16)7×(5)10×(3)1237×57×35×85×163×53 [∵(am)n=am×n,(a×b)n=an×bn]
=(16)7×(5)10×(3)1237×35×57×53×85×163
=(16)7×(5)10×(3)12312×510×85×163 [∵am×an=a(m+n)]
=(16)785×163 [∵am÷an=a(m−n)]
=(16)7−385
=(16)485
=(2×8)485
=24×8485
=248=168=2