Simplify :
(i) 3√2−2√33√2+2√3+√12√3−√2
(ii) 7+3√53+√5−7−3√53−√5
(i) 3√2−2√33√2+2√3+√12√3−√2
Now, 3√2−2√33√2+2√3=(3√2−2√3)(3√2−2√3)(3√2+2√3)(3√2−2√3)
(Rationalising the denominator)
=(3√2−2√3)2(3√2)2−(2√3)2
=9×2+4×3−2×3√2×2√39×2−4×3
=18+12−12√618−12=30−12√66=5−2√6
And, √12√3−√2=(√4×3)(√3+√2)(√3−√2)(√3+√2)
=2√3(√3+√2)(√3)2−(√2)2=2×3+2√63−2
=6+2√61=6+2√6
∴3√2−2√33√2+2√3+√12√3−√2=5−2√6+6+2√6=11
(ii) 7+3√53+√5−7−3√53−√5
=(7+3√5)(3−√5)−(7−3√5)(3+√5)(3+√5)(3−√5)
=(21−7√5+9√5−3×5)−(21+7√5−9√5−3√5×√5)(3)2−(√5)2
=(21+2√5−15)−(21−2√5−15)9−5
=(6+2√5)−(6−2√5)4
=6+2√5−6+2√54=4√54=√5