Simplify.(i)25×t−45−3×10×t−8,t≠0, (ii)3−5×10−5×1255−7×6−5
(i) Given 25×t−45−3×10×t−8,t≠0
⇒25×t−45−3×10×t−8=52×t−45−3×5×2×t−8
=52×t−45−3+1×2×t−8 [Since, am×an=am+n]
=52×t−45−2×2×t−8
=52−(−2)×t−4−(−8)2 [Since, aman=am−n]
=52+2×t−4+82
=54×t42
∴25×t−45−3×10×t−8=625t42
(ii) Given 3−5×10−5×1255−7×6−5=3−5×(2×5)−5×535−7×(2×3)−5
=3−5×2−5×5−5×535−7×2−5×3−5 [Since, (a×b)n=an×bn
=3−5+5×2−5+5×5−5+3+7
=30×20×55
=1×1×55 [Since, a0=1]
∴3−5×10−5×1255−7×6−5=55