Simplify:
(i) {(13)−3−(12)−3}÷(14)−3 (ii)(32−22)×(23)−3(iii) {(12)×(−4)−1}−1 (iv) [{(−14)2}−2]−1(v) {(23)2}3×(13)−4×3−1×6−1
(i) {(13)−3−(12)−3}÷(14)−3=(33−23)÷(4)3=(27−8)÷64=1964(ii)(32−22)×(23)−3=(32−22)×(32)3=(9−4)×278=5×278=1358(iii) {(12)×(−4)−1}−1={(2)1×(1−4)}−1=(2×1−4)−1=(−12)−1=(−2)1=−2(iv) [{(−14)2}−2]−1=(−14)2×(−2)×(−2)=(−14)4=(−14)×(−14)×(−14)×(−14)=1256(v) {(23)2}3×(13)−4×3−1×6−1=(23)2×3×(31)4×131×161=(23)6×(3)4×13×16=2×2×2×2×2×23×3×3×3×3×3×3×3×3×3×13×16=643×3×3×6=6481×2=3281