(i) log525+log5625=log5(25×625) [∵loga(M×N)=logaM+logaN]
=log5(52×54)=log556=6log55 [∵loga(M)n=nlogaM]
=6(1)=6 [∵logaa=1]
(ii) log54+log5(1100)=log5(4×1100) [∵loga(M×N)=logaM+logaN]
=log5(125)=log5(152)=log55−2=−2log55 [∵loga(M)n=nlogaM]
=−2(1)=−2 [∵logaa=1]
log525+log5625=log5(25×625)