We have,
I=∫x2+5x+5x4dx
I=∫(x2x4+5xx4+5x4)dx
I=∫(1x2+5x3+5x4)dx
I=∫(x−2+5x−3+5x−4)dx
We know that
∫xndx=xn+1n+1+C
Therefore,
I=x−2+1−2+1+5x−3+1−3+1+5x−4+1−4+1+C
I=x−1−1+5x−2−2+5x−3−3+C
I=−(1x+52x2+53x3)+C
Hence, this is the answer.