(r1+r2+r3−r)2=r21+r22+r23+r2−2r(r1+r2+r3)+2(r1r2+r2r3+r3r1) ....(1)We know that
r1+r2+r3−r=4R....(2)
and (r1r2+r2r3+r3r1)=s2....(3)
r(r1+r2+r3)=Δs(Δs−a+Δs−b+Δs−c)
=(Δ2s(s−a)+Δ2s(s−b)+Δ2s(s−c))
=(s−b)(s−c)+(s−a)(s−c)+(s−a)(s−b)
(∵Δ=√s(s−a)(s−b)(s−c))
=3s2−2(a+b+c)s+(ab+bc+ca)
=3s2−2s(2s)+(ab+bc+ca)
r(r1+r2+r3)=−s2+(ab+bc+ca)...(4)
from (1),(2),(3) and (4)
(4R)2=r21+r22+r23+r2−2(−s2+(ab+bc+ca))+2s2
⇒r21+r22+r23+r2=16R2−[4s2−2(ab+bc+ca)]
=16R2−[(2s)2−(2ab+2bc+2ca)]
=16R2−[(a+b+c)2−2ab−2bc−2ac]
=16R2−[(a2+b2+c2+2ab+2bc+2ca)−2ab−2bc−2ca]
=16R2−a2−b2−c2