wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify r2+r21+r22+r23=16R2a2b2c2

Open in App
Solution

(r1+r2+r3r)2=r21+r22+r23+r22r(r1+r2+r3)+2(r1r2+r2r3+r3r1) ....(1)
We know that
r1+r2+r3r=4R....(2)
and (r1r2+r2r3+r3r1)=s2....(3)
r(r1+r2+r3)=Δs(Δsa+Δsb+Δsc)
=(Δ2s(sa)+Δ2s(sb)+Δ2s(sc))
=(sb)(sc)+(sa)(sc)+(sa)(sb)
(Δ=s(sa)(sb)(sc))
=3s22(a+b+c)s+(ab+bc+ca)
=3s22s(2s)+(ab+bc+ca)
r(r1+r2+r3)=s2+(ab+bc+ca)...(4)
from (1),(2),(3) and (4)
(4R)2=r21+r22+r23+r22(s2+(ab+bc+ca))+2s2
r21+r22+r23+r2=16R2[4s22(ab+bc+ca)]
=16R2[(2s)2(2ab+2bc+2ca)]
=16R2[(a+b+c)22ab2bc2ac]
=16R2[(a2+b2+c2+2ab+2bc+2ca)2ab2bc2ca]
=16R2a2b2c2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangle Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon