Simplify: xqxrqr×xrxprp×xpxqpq.
Simplifying the given expression using the laws of the radical exponent.
xqxrqr×xrxprp×xpxqpq=xq−rqr×xr−prp×xp−qpq∵pmpn=pm-n=xq−r1qr×xr−p1rp×xp−q1pq∵an=a1n=xq−rqr×xr−prp×xp−qpq∵amn=amn=xq−rqr+r−prp+p−qpq∵ap/q×ar/s=apq+rs=xpq−r+qr−p+rp−qpqr=xpq−pr+qr−pq+pr−qrpqr=x0pqr=x0=1
Hence, the simplified value of the given expression is 1.
Angles Q and R of a ΔPQR are 25° and 65°.
Write which of the following is true:
(i) PQ2 + QR2= RP2
(ii) PQ2 + RP2= QR2
(iii) RP2 + QR2= PQ2