Consider given the expression, tan−1(1−cosxsinx), x∈(0,π2)
∵cosx=1−2sin2x2, sinx=2sinx2cosx2
Therefore,
=tan−1(1−cosxsinx)=tan−1⎛⎜ ⎜ ⎜ ⎜⎝1−(1−2sin2x2)2sinx2cosx2⎞⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜⎝2sin2x22sinx2cosx2⎞⎟ ⎟⎠=tan−1⎛⎜ ⎜⎝sinx2cosx2⎞⎟ ⎟⎠=tan−1tanx2
=x2
Hence, this is the required result.