Simplify tan−1(6x1−8x2)
Solve
tan−1(6x1−8x2)
=tan−1(2x+4x1−(2x)(4x))
We know that,
tan−1(A+B1−AB)=tan−1A+tan−1B
So,
tan−1(2x+4x1−(2x)(4x))=tan−12x+tan−14x
=tan−12x+tan−14x
If α=tan−1(4x−4x31−6x2+x4), β=2sin−1(2x1+x2) and tanπ8=k, then