The correct option is B 6√2−1917
For rationalization, apply a2−b2=(a+b)(a−b).
√3−3√6√3+3√6=√3(1−3√2)√3(1+3√2)
(cancelling common terms from numberator and denominator)
=1−3√21+3√2=(1−3√2)×(1−3√2)(1+3√2)×(1−3√2)=(1−3√2)2(1)2−(3√2)2=(1)2−2×1×3√2+(3√2)21−9×2=1−6√2+9×2−17=19−6√2−17=6√2−1917