Simplify the expression
(1+x)1000+x(1+x)999+x2(1+x)998+⋯+x1000 and find the coefficient of x50
Clearly, the given series is a geometric series in which
a=(1+x)1000,r=x(1+x)999(1+x)1000=x(1+x) and n=1001∴Given sum=a(1−rn)(1−r)(1+x)1000×{1−(x1+x)1001}(1−x1+x)=(1+x)1001−x10011+1001C1x+1001C2x2+⋯1001C1000x1000=1+1001C1x+1001C2x2+⋯+1001C1x1000∴coefficient of x50 in the above expansion=1001C50=(1001)!(50)!Q.(1001−50)!=(1001)!(50)!.(951)!