The correct option is
D None
Cyclic expressions refers to substitution of variables in cyclic manner.
We have, ∑a,b,c(a+1)3(b2−c2)
Here, a,b,c are variables & the two expressions are multiplied.
So, ∑a,b,c(a+1)3(b2−c2)=(a+1)3(b2−c2)+(b+1)3(c2−a2)+(c+1)3(a2−b2)
=(a3+1+3a2+3a)(b2−c2)+(b3+1+3b2+3b)(c2−a2)+(c3+1+3c2+3c)(a2−b2)[∵(x+y)3=x3+y3+3x2y+3xy2]
=a3b2−a3c2+b2−c2+3a2b2−3a2c2+3ab2−3ac2+b3c2−b3a2+c2−a2+3b2c2−3b2a2+3bc2−3ba2+c3a2−c3b2+a2−b2+3c2a2−3c2b2+3ca2−3cb2
=a2(b3−c3)+b2(a3−c3)+c2(b3−a3)+3[ab(b−a)+bc(b−c)+ac(c−a)]
Hence, ∑a,b,c(a+1)3(b2−c2)=a2(b3−c3)+b2(a3−c3)+c2(b3−a3)+3[ab(b−a)+bc(b−c)+ac(c−a)]
So, D is the correct option.