(i)
∑a,b,c(b−c)(b+c)cyclic expressions refers to substitution of variables in cyclic manner.
Here, a,b,c are variables & the two expressions are multiplied.
So, ∑a,b,c(b−c)(b+c)=(b−c)(b+c)+(c−a)(c+a)+(a−b)(a+b)
=b2−c2+c2−a2+a2−b2
=0
(ii) (∑a,b,ca)2−(∑a,b,ca2)
⇒(a+b+c)2−(a2+b2+c2)
⇒a2+b2+c2+2ab+2ca+2bc−a2−b2−c2
⇒2(ab+bc+ca)
(iii) ∑a,b,c(a+1)3(b2−c2)
⇒(a+1)3(b2−c2)+(b+1)3(c2−a2)+(c+1)3(a2−b2)
⇒(a3+3a2+3a+1)(b2−c2)+(b3+3b2+3b+1)(c2−a2)+(c3+3c2+3c+1)(a2−b2)
⇒a3b2−a3c2+3a2b2−3a2c2+3ab2−3ac2+b2−c2+b3c2−b3a2+3b2c2−3b2a2
+3bc2−3ba2+c2−a2+c3a2−c3b2+3c2a2−3c2b2+3ca2−3cb2+a2−b2
⇒a3b2−a3c2+3ab2−3ac2+b3c2−b3a2+3bc2−3ba2+c3a2−c3b2+3ca2−3cb2
⇒(a3+3a)(b2−c2)+(b3+3b)(c2−a2)+(c3+3c)(a2−b2)