wiz-icon
MyQuestionIcon
MyQuestionIcon
10
You visited us 10 times! Enjoying our articles? Unlock Full Access!
Question

Simplify the following:
6236+63+24362 = ?

Open in App
Solution

We will first rationalize the denominators of the given expression and then solve it as follows:

6236+63+24362=(6236×23+623+6)+(63+2×3232)(4362×6+26+2)=⎜ ⎜6(23+6)(236)(23+6)⎟ ⎟+⎜ ⎜6(32)(3+2)(32)⎟ ⎟⎜ ⎜43(6+2)(62)(6+2)⎟ ⎟=⎜ ⎜6(23+6)(23)2(6)2⎟ ⎟+⎜ ⎜6(32)(3)2(2)2⎟ ⎟⎜ ⎜43(6+2)(6)2(2)2⎟ ⎟{(ab)(a+b)=a2b2}
=⎜ ⎜6(23+6)126⎟ ⎟+⎜ ⎜6(32)32⎟ ⎟⎜ ⎜43(6+2)62⎟ ⎟=⎜ ⎜6(23+6)6⎟ ⎟+⎜ ⎜6(32)1⎟ ⎟⎜ ⎜43(6+2)4⎟ ⎟=(23+6)+6(32)3(6+2)=(23+6)+(6×36×2)(3×6+3×2)
=(23+6)+(1812)(18+6)=23+6+1812186=2312=232×2×3=2323=0

Hence, 6236+63+24362=0

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Completing the Square
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon