Simplify the following expressions :
(i) (11+√11)(11−√11)
(ii) (5+√7)(5−√7)
(iii) (√8−√2)(√8+√2)
(iv) (3+√3)(3−√3)
(v) (√5−√2)(√5+√2)
(i) (11+√11)(11−√11)=(11)2−(√11)2 {∵ (a+b)(a−b)=a2−b2}=121−11=110
(ii) (5+√7)(5−√7)=(5)2−(√7)2 {∵ (a+b)(a−b)=a2−b2}=25−7=18
(iii) (√8−√2)(√8+√2)=(√8)2−(√2)2 {∵ (a+b)(a−b)=a2−b2}=8−2=6
(iv) (3+√3)(3−√3)=(3)2−(√3)2 {∵ (a+b)(a−b)=a2−b2}=9−3=6
(v) (√5−√2)(√5+√2)=(√5)2−(√2)2 {∵ (a+b)(a−b)=a2−b2}=5−2=3