The correct option is
C 2x+1The given expression [2x+5x+1+x2+1x2−1]−(3x−2x−1)can be simplified as shown below:
=[2x+5x+1+x2+1x2−1]−(3x−2x−1)
=[2x+5x+1+x2+1(x−1)(x+1)]−(3x−2x−1)(∵a2−b2=(a−b)(a+b))
=[(2x+5)(x−1)(x+1)(x−1)+x2+1(x−1)(x+1)]−(3x−2x−1)(TakingLCM)
=[2x2−2x+5x−5(x−1)(x+1)+x2+1(x−1)(x+1)]−(3x−2x−1)
=[2x2+3x−5+x2+1(x−1)(x+1)]−(3x−2x−1)
=3x2+3x−4(x−1)(x+1)−3x−2x−1
=3x2+3x−4(x−1)(x+1)−(3x−2)(x+1)(x−1)(x+1)(TakingLCM)
=3x2+3x−4(x−1)(x+1)−3x2+3x−2x−2(x−1)(x+1)
=3x2+3x−4(x−1)(x+1)−3x2+x−2(x−1)(x+1)
=(3x2+3x−4)−(3x2+x−2)(x−1)(x+1)=3x2+3x−4−3x2−x+2(x−1)(x+1)
=2x−2(x−1)(x+1)
=2(x−1)(x−1)(x+1)
=2x+1
Hence, [2x+5x+1+x2+1x2−1]−(3x−2x−1)=2x+1.