log5x+logx(x3)<log5x(2−log3x)log3x
logxlog5+logxlogx−log3logx<2logxlog5log3logx−log5x
(logx)(log5)+1−log3(logx)<2log3log5−logxlog5
2logxlog5−log3logx<2log3log5−1
2(logx)2−(log3)(log5)(logx)(log5)<2log3−log5(log5)
(logx)[2(logx)2−(log3)(log5)]<(2log3−log5)(logx)2
[2(logx)2−(2log3−log5)logx−(log3)(log5)](logc)<0
[2logx+1log5][logx−log3](logx)<0
logxϵ(−∞,−12log5)⋃(log1,log3)
xϵ(0,125)⋃(1,3)