wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Simplify: (x3-y3)3+(y3-z3)3+(z3-x3) 3 divided by (x-y)3+(y-z)3+(z-x)3

Open in App
Solution

We know that, if a + b + c = 0, then a3 + b3 + c3 - 3abc = 0 or a3 + b3 + c3 = 3abc For the numerator : (x3 - y3) + (y3 - z3) + (z3 - x3) = 0 so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3 = 3 (x3 - y3) (y3 - z3) (z3 - x3) Again, x3 - y3 = (x - y) (x2 + xy + y2) so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3 = 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2) For the denominator : (x - y) + (y-z) + (z-x) = 0 so, (x - y)3 + (y - z)3 + (z - x)3 = 3 (x - y) (y-z) (z-x) Now,(x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3 (x - y)3 + (y - z)3 + (z - x)3= 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2) 3 (x - y) (y-z) (z-x) =(x2 + xy + y2) (y2 + yz + z2) (z2 + zx + x2)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Binomial by a Binomial
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon