1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Multiplication of Binomial by a Binomial
Simplify: (x3...
Question
Simplify: (x3-y3)3+(y3-z3)3+(z3-x3) 3 divided by (x-y)3+(y-z)3+(z-x)3
Open in App
Solution
We
know
that
,
if
a
+
b
+
c
=
0
,
then
a
3
+
b
3
+
c
3
-
3
abc
=
0
or
a
3
+
b
3
+
c
3
=
3
abc
For
the
numerator
:
(
x
3
-
y
3
)
+
(
y
3
-
z
3
)
+
(
z
3
-
x
3
)
=
0
so
,
(
x
3
-
y
3
)
3
+
(
y
3
-
z
3
)
3
+
(
z
3
-
x
3
)
3
=
3
(
x
3
-
y
3
)
(
y
3
-
z
3
)
(
z
3
-
x
3
)
Again
,
x
3
-
y
3
=
(
x
-
y
)
(
x
2
+
xy
+
y
2
)
so
,
(
x
3
-
y
3
)
3
+
(
y
3
-
z
3
)
3
+
(
z
3
-
x
3
)
3
=
3
(
x
-
y
)
(
x
2
+
xy
+
y
2
)
(
y
-
z
)
(
y
2
+
yz
+
z
2
)
(
z
-
x
)
(
z
2
+
zx
+
x
2
)
For
the
denominator
:
(
x
-
y
)
+
(
y
-
z
)
+
(
z
-
x
)
=
0
so
,
(
x
-
y
)
3
+
(
y
-
z
)
3
+
(
z
-
x
)
3
=
3
(
x
-
y
)
(
y
-
z
)
(
z
-
x
)
Now
,
(
x
3
-
y
3
)
3
+
(
y
3
-
z
3
)
3
+
(
z
3
-
x
3
)
3
(
x
-
y
)
3
+
(
y
-
z
)
3
+
(
z
-
x
)
3
=
3
(
x
-
y
)
(
x
2
+
xy
+
y
2
)
(
y
-
z
)
(
y
2
+
yz
+
z
2
)
(
z
-
x
)
(
z
2
+
zx
+
x
2
)
3
(
x
-
y
)
(
y
-
z
)
(
z
-
x
)
=
(
x
2
+
xy
+
y
2
)
(
y
2
+
yz
+
z
2
)
(
z
2
+
zx
+
x
2
)
Suggest Corrections
1
Similar questions
Q.
If
x
+
y
+
z
=
0
, what can be said about
x
3
+
y
3
+
z
3
?
Q.
Simplify :
(x-y)
3
+ (y-z)
3
+ (z-x)
3
Q.
Prove that:
(x + y)
3
+ (y + z)
3
+ (z + x)
3
− 3(x + y) (y + z) (z + x) = (x
3
+ y
3
+ z
3
− 3xyz).
Q.
Factorize:
(
x
−
y
)
3
+
(
y
−
z
)
3
+
(
z
−
x
)
3
Q.
Factorise:
(
x
−
y
)
3
+
(
y
−
z
)
3
+
(
z
−
x
)
3
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Multiplication of Binomial by a Binomial
MATHEMATICS
Watch in App
Explore more
Multiplication of Binomial by a Binomial
Standard VIII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app