Simplify (xy+yz)2−2 x2 y2z. Find the value when x=−1,y=1 and z=2.
-3
Simplify (xy+yz)2 using the identity (a+b)2 = a2+ b2 + 2ab
We get, (xy+yz)2=x2y2 + y2z2 + 2xzy2
Therefore, (xy+yz)2−2x2y2z = x2y2 + y2z2 + 2xzy2 − 2x2y2z
Placing the values of x,y and z in the above expression,
1+4−4−4=−3