Simplify (xy+yz)2−2x2y2z.
Find the value when x=−1, y=1 and z=2.
-3
Simplifying (xy+yz)2 using the identity
(a+b)2=a2+b2+2ab
We get,
(xy+yz)2=x2y2+y2z2+2xzy2
Therefore,
(xy+yz)2−2x2y2z=x2y2+y2z2+2xzy2−2x2y2z
Placing the values of x,y and z in the above expression, we get
1+4−4−4=−3