The correct option is D 0
Given: sin−1(1−x)−2sin−1x=π2
Let sin−1x=θ so,x=sinθ
⇒sin−1(1−x)−2θ=π2
⇒sin−1(1−x)=π2+2θ
⇒1−x=sin(π2+2θ)
⇒1−x=cos2θ
⇒1−x=1−2sin2θ
⇒1−x=1−2x2
{∵x=sinθ}
⇒x(2x−1)=0
⇒x=0 or 2x−1=0
⇒x=0 or x=1/2
x=12 does not satisfy given equation.
So, the answer is x=0.
Option (C) is correct.