The correct option is A -1/12
Given, sin−16x+sin−16√3x=−π2⇒sin−16x=−π2−sin−16√3x⇒sin(sin−16x)=sin(−π2−sin−16√3x)⇒6x=cos(sin−16√3x)⇒6x=cos(cos−1(√1−108x2))⇒6x=√1−108x2⇒36x2=1−108x2⇒144x2=1⇒x=±112
For x=112
sin−16x+sin−16√3x=−π2⇒sin−112+sin−1√32⇒π6+π3=π2
And for x=−112
sin−16x+sin−16√3x=−π2⇒sin−1(−12)+sin−1(−√32)⇒−π6−π3=−π2
Hence, x=−112 is the only solution