sin−1a+sin−1β+sin−1y=3π2,then aβ+ay+βy is equal to
Since, sin,−π2≤sin−1x≤π2, sin−1a=π2,sin−1β=π2,sin−1y=π2 ∴a=β=y=1. Thus, aβ+ay+βy=3
If sin−1x+sin−1y=π2,then cos−1x+cos−1y is equal to
sin−1x+sin−1y+sin−1z=3π2, then the value of x100+y100+z100−9x101+y101+z101=