sin-1-22+cos-1-12-tan-1-3+cot-1-13=
7π12
17π12
5π12
π12
Explanation for the correct answer:
Simplifying the given expression:
sin-1-22+cos-1-12-tan-1-3+cot-1-13=sin-1-12+cos-1-12-tan-1-3+cot-1-13=-sin-1sin45°+cos-1cos120°-tan-1tan120°+cot-1cot120°
∵-sinn45°=-12,cos120°=-12,tan120°=-3,cot120°=-13, substituting we have,
=-sin-1sinπ4+cos-1cos2π3-tan-1tan2π3+cot-1cot2π3=-π4+2π3-2π3-π+2π3=-π4+2π3+π3+2π3=17π12
Therefore, the correct answer is option (B).