wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Sin (1+ tan ) + cos (1+ cot)= sec + cosec.

Open in App
Solution

L.H.S= sin θ ( 1 + tan θ ) + cos θ ( 1 + cot θ ) (Given)

=>sin θ ( 1 + sin θ / cos θ ) + cos θ ( 1 + cos θ / sin θ )

=>sin θ ( cos θ + sin θ ) / cos θ + cos θ ( sin θ + cos θ ) / sin θ

=>( cos θ + sin θ ) ( tan θ + cot θ )

=>( cos θ + sin θ ) ( sin² θ + cos²θ ) / ( sin θ cos θ )

=>( cos θ + sin θ ) / ( sin θ cos θ ) since sin² θ + cos²θ = 1

=>[ cos θ / ( sin θ cos θ ) ] + [ sin θ / ( sin θ cos θ ) ]

=>1 / sin θ + 1 / cos θ

=>cosec θ + sec θ
L.H.S=R.H.S
Hence proved

flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualisation of Trigonometric Ratios Using a Unit Circle_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon