The correct option is
A (a+x)arctan√xa−√ax+cLet I=∫sin−1√xa+xdx
Put x=atan2θ
⇒dx=2atanθsec2θdθ
∴I=∫sin−1√sin2θ2asec2θtanθdθ
=∫sin−1sinθ2asec2θtanθdθ
=2a∫θsec2θtanθdθ
Let u=θ⇒du=dθ
dv=sec2θtanθdθ
v=∫sec2θtanθdθ
Let t=tanθ⇒dt=sec2θdθ
v=∫tdt=t22=tan2θ2
∴I=2a[θ∫sec2θtanθdθ−∫(θ)′(∫sec2θtanθdθ)dθ]+C
=2a[θtan2θ2−∫tan2θ2dθ]+C
=a[θtan2θ−∫(sec2θ−1)dθ]+C
=a[atan2θ−tanθ+θ]+C
=a[xatan−1√xa−√xa+tan−1√xa]+C
=a[(xa+1)tan−1√xa−√xa]+C
=a[(x+aa)tan−1√xa−√xa]+C
=(x+a)tan−1√xa−a√xa×√aa+C
=(a+x)tan−1√xa−√ax+C