The correct option is B
-1
we can see that the angles 18° and 72° are complimentary.
⇒sin 18°=sin (90°−72°)⇒sin 18°=cos 72°
Using the relation sin (π2−θ)=cos θ.
Thus, our relation becomes
sin 18°cos 72°×tan 150°cot 60°=cos 72°cos 72°×tan 150°cot 60°⇒sin 18°cos 72°×tan 150°cot 60°=tan 150°cot 60°
Also tan 150°=tan (90°+60°)⇒tan 150°=−cot 60°
Since, tan (90°+θ)=−cot θ
Thus, our expression becomes
sin 18°cos 72°×tan 150°cot 60°=−cot 60°cot 60°=−1
Thus, option b. is the correct option.