sin25∘+sin210∘+sin215∘+...+sin285∘+sin290∘=
Given expression is:
sin25∘+sin210∘+sin215∘+...+sin285∘+sin290∘
We know that sin90∘=1 or sin290∘=1
Similarly, sin45∘=1√2 or sin245∘=12 and the angles are in A.P. of 18 terms. We also know that
sin285∘=[sin(90∘−5∘)]2=cos25∘.
Therefore from the complementary rule, we find sin25∘+sin285∘=sin25∘+cos25∘ = 1.
Therefore,
sin25∘+sin210∘+sin215∘+...+sin285∘+sin290∘
=(1+1+1+1+1+1+1+1)+12+1=912