Let α−β=x,β−γ=y,γ−α=z. x+y+z=0 or x+y=−z ∴sin(x+y)=−sinz,cos(c+y)=cosz .(1) Hence we have to prove that sin2x+sin2y+sin2z=−4sinxsinysinz. L.H.S. =2sin(x+y)cos(x−y)+2sinzcosz by (1) =−2sinzcos(x−y)+2sinzcosz =−2sinz[cos(x−y)−cosz] =−2sinz[cos(x−y)−cos(x+y)], by (1) =−2sinz(2sinxsiny). =−4sinxsinysinz.