sin2A1+cos2Acos2A1+cosA=
tanA2
cotA2
secA2
cscA2
Explanation for the correct answer:
Simplifying the given expression:
sin2A1+cos2Acos2A1+cosA
Using the formulacos2x=2cos2x–1andsin2x=2sinxcosx
2sinAcosA2cos2AcosA1+cosA=sinA1+cosA
Using the formulas sinx=2sinx2cosx2andcosx=2cos2x2–1
=2sinA2cosA22cos2A2=sinA2cosA2=tanA2
Therefore, the correct answer is option (A).
If tan-111+2+tan-111+23+tan-111+34+...+tan-111+nn+1=tan-1θ. Then θ is equal