Given equation can be
written as
3sinθ−4sin3θ=4sinθsin2θsin4θ
Hence either sinθ=0⇒θ=nπ
or 3−4sin2θ=4sin2θsin4θ
3−2(1−cos2θ)=2(cos2θ−cos6θ)
or 1=−2cos6θ
cos6θ=−12=cos2π3
6θ=2nπ±2π3
if −π≤θ≤π then total solution
are 0,π9,2π9,4π9,5π9,7π9,8π9,π is 8 real
solutions.