f(x)=sin3x+sin3(120+x)+sin3(240+x)
=3sinx−sin3x+3sin(120+x)−sin(2π+3x)+3sin(240+x)−sin(4π+x)4
[∵sin3x=3sinx−4sin3x]
=3[sinx+sin(120+x)+sin(240+x)]−3sin3x4
=34[[sinx+2sin(180+x)cos60o]−sin3x]
=34[[sinx−sinx]−sin3x]
=34[−sin3x]
f(x)=−34sin3x
∴ range of f(x)ϵ[−34,34]
So, P=3