Evaluate : sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θ
tan3θ
cot3θ
tan6θ
cot6θ
Explanation for the correct answer:
Simplifying the equations using trigonometric identities:
sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θOnrearrangingsin9θ+sin3θ+sin7θ+sin5θcos9θ+cos3θ+cos7θ+cos5θ
Using the formulas sinx+siny=2sinx+y2cosx-y2 and cosx+cosy=2cosx+y2cosx-y2
⇒2sin9θ+3θ2cos9θ-3θ2+2sin7θ+5θ2cos7θ-5θ22cos9θ+3θ2cos9θ-3θ2+2cos7θ+5θ2cos7θ-5θ2⇒2sin6θcos3θ+2sin6θcosθ2cos6θcos3θ+2cos6θcosθ⇒2sin6θcos3θ+cosθ2cos6θcos3θ+cosθ⇒sin6θcos6θ⇒tan6θ∵sinxcosx=tanx
Therefore, the correct answer is option (C).
Evaluate :cos48°-sin42°