2sin2xcosx+2cosx=2sinxcosx+2cos2x
Cancel 2cosx and cosx=0
gives x=(n+12)π,n∈I .(1)
∴sin2x+1=sinx+cosx
or (sinx+cosx)2=sinx+cosx
∴sinx+cosx=0 or 1
sinx+cosx=0 gives tanx=−1=−tanπ4
∴x=nπ−π4 ..(2)
sinx+cosx=1
∴x=2nπ or (2nπ+π2) i.e., (2n+12)π (3)
But the second form is included in (1). Hence the required answers are (n+12)π, nπ−π4 and 2nπ from (1),(2),(3).