Evaluate sin4π8+sin43π8+sin45π8+sin47π8:
12
14
32
34
Explanation for the correct answer:
Simplifying the equations using trigonometric identities:
GIven expression is: sin4π8+sin43π8+sin45π8+sin47π8
Simplifying the above expression:
=sin4π8+sin43π8+sin45π8+sin47π8=sin2π82+sin23π82+sin25π82+sin27π82=1–cosπ422+1–cos3π422+1–cos3π422+1–cos7π422∵sin2A=1–cos2A2=1-2222+1+2222+1-2222+1+2222∵cosπ4=12=22=21-2222+21+2222=22-242+22+242=182-22+182+22=184-42+2+4+42+2=128=32
Therefore, the correct answer is Option (C).
Evaluate.