sin47∘−sin25∘+sin61∘−sin11∘=
cos7∘
sin7∘
2cos7∘
2sin7∘
(sin47∘+sin61∘)−(sin25∘+sin11∘)
=2sin54∘cos7∘−sin18∘cos7∘ [Using sinC+sinD=2sin(C+D2)cos(C−D2)]
=2cos7∘(sin54∘−sin18∘)
=2cos7∘(cos36∘−sin18∘)
=2cos7∘(√5+14−√5−14)=2cos7∘2=cos7∘
cos36∘=√5+14