wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove sin6θ+cos6θ=13sin2θcos2θ

Open in App
Solution

To prove :
sin6θ+cos6θ=13sin2θcos2θ
LHS sin6θ+cos6θ
=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)[a3+b3=(a+b)(a2+b2ab)]
=1(sin4θ+cos4θsin2θcos2θ)(sin2x+cos2x=1)
=(sin2θ+cos2θ)22sin2θcos2θsin2θcos2θ)((a+b)22ab=a2+b2)
=(13sin2θcos2θ)
= R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon